
TimeSpec4LULC: A Global Deep Learning-driven Dataset of
MODIS Terra-Aqua Multi-Spectral Time Series for LULC Mapping
and Change Detection
Rohaifa Khaldi1, Domingo Alcaraz-Segura1,3, Emilio Guirado4, Yassir Benhammou5, Abdellatif El
Afia2, Francisco Herrera5, and Siham Tabik5

1Dept. of Botany, Faculty of Science, University of Granada, 18071 Granada, Spain
2ENSIAS, Mohammed V University, Rabat, 10170, Morocco
3iEcolab, Inter-University Institute for Earth System Research, University of Granada, 18006 Granada, Spain
4Multidisciplinary Institute for Environment Studies “Ramón Margalef”, University of Alicante, 03690, Spain
5Dept. of Computer Science and Artificial Intelligence, Andalusian Research Institute in Data Science and Computational
Intelligence, DaSCI, University of Granada, 18071, Granada, Spain

Correspondence: Rohaifa Khaldi (rohaifa@ugr.es); Domingo Alcaraz-Segura (dalcaraz@ugr.es)

Abstract. Land Use and Land Cover (LULCs) mapping and change detection are of paramount importance to understand the

distribution and effectively monitor the dynamics of the Earth’s system. An unexplored way to create global LULC maps is

by building good quality LULC-models based on state-of-the-art deep learning networks. Building such models requires large

global good quality time series LULC datasets, which are not available yet. This paper presents TimeSpec4LULC (Khaldi

et al., 2021), a smart open-source global dataset of multi-Spectral Time series for 29 LULC classes. TimeSpec4LULC was5

built based on the 7 spectral bands of MODIS sensor at 500 m resolution from 2002 to 2021, and was annotated using a spatial

agreement across the 15 global LULC products available in Google Earth Engine. The 19-year monthly time series of the

seven bands were created globally by: (1) applying different spatio-temporal quality assessment filters on MODIS Terra and

Aqua satellites, (2) aggregating their original 8-day temporal granularity into monthly composites, (3) merging their data into

a Terra+Aqua combined time series, and (4) extracting, at the pixel level, 11.85 million time series for the 7 bands along with10

a set of metadata about geographic coordinates, country and departmental divisions, spatio-temporal consistency across LULC

products, temporal data availability, and the global human modification index. To assess the annotation quality of the dataset,

a sample of 100 pixels, evenly distributed around the world, from each LULC class, was selected and validated by experts

using very high resolution images from both Google Earth and Bing Maps imagery. This smartly, pre-processed, and annotated

dataset is targeted towards scientific users interested in developing and evaluating various machine learning models, including15

deep learning networks, to perform global LULC mapping and change detection.
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1 Introduction

Accurate Land-Use and Land-Cover (LULC) information, including distribution, dynamics and changes, is of paramount

importance for understanding and modelling the natural and human-modified behavior of the Earth’s system (Tuanmu and Jetz,20

2014; Verburg et al., 2009). Land cover is an essential variable that provides powerful insights for the assessment and modelling

of terrestrial ecosystem processes, biogeochemical cycles, biodiversity, climate, and water resources, etc. (Luoto et al., 2007;

Menke et al., 2009; Polykretis et al., 2020). Land uses incorporate many types of modifications that an increasing human

population, 9 billion expected by 2050, causes to the Earth surface. LULCs are subjected to anomalies, trends and changes

both from anthropogenic and natural origins (Polykretis et al., 2020), with subsequent modifications on their biophysical25

properties. LULC change is usually interpreted as the conversion from one LULC category to another or/and the modification

of land management within LULC (Meyer et al., 1994). The assessment of LULC and LULC change has been identified as an

essential planetary boundary to assess the status and trends of social-ecological systems from the local to the global scale in

the pursuit of a safe operating space for humanity. For instance, urban sprawl and agriculture expansion or abandonment affect

the biodiversity, soil quality, climate, food security, and human health (Lambin and Geist, 2008; Feddema et al., 2005). For this30

reason, continuous and accurate LULC and LULC change mapping is essential in policy and research to monitor ecological

and environmental change at different temporal and spatial scales (Polykretis et al., 2020; García-Mora et al., 2012), and as

a decision support system to ensure an effective and sustainable planning and management of natural resources (Kong et al.,

2016; Congalton et al., 2014; Grekousis et al., 2015).

Satellite remote sensing in combination with geographic information systems (GIS) have provided convenient, inexpensive,35

and continuous spatio-temporal information for mapping LULCs and detecting changes on the Earth’s surface from regional

to global scales (Kong et al., 2016; Kerr and Ostrovsky, 2003; Pfeifer et al., 2012) thanks to their strong ability to cover, timely

and repeatedly, wide and inaccessible areas, and to get high spatial and temporal resolution data (Alexakis et al., 2014; Yirsaw

et al., 2017; Patel et al., 2019). Since the 1980s, multiple global LULC products (Table 1) have been derived from remotely

sensed data, providing alternative characterizations of the Earth surface at varying extents of spatial and temporal resolutions40

(Townshend et al., 1991; Loveland et al., 2000; Bartholome and Belward, 2005).

One of the most important limitations of global LULC products is the within-product variability of accuracy (across different

years, regions, and LULC types), besides the generally low agreement among products in many regions of the world (Tsend-

bazar et al., 2015b, 2016; Gao et al., 2020; Gong et al., 2013; Zimmer-Gembeck and Helfand, 2008). Such lack of consensus

can translate into huge implications for subsequent global assessments of biodiversity status, carbon balance, or climate change45

(Estes et al., 2018; de la Cruz et al., 2017). In addition, accuracy at the local level can be too low, which impedes the use of

global or regional LULC products in local studies (Hoskins et al., 2016; Tsendbazar et al., 2016), since it can lead to different

conclusions due to the compelling amount of inconsistencies, uncertainties, and inaccuracies (Tsendbazar et al., 2015a; Estes

et al., 2018). Multiple methodological reasons lay behind these discrepancies among LULC products (Congalton et al., 2014;

Grekousis et al., 2015; Gómez et al., 2016):50
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Table 1. Description of the GEE Global LULC products used in this study.

Product

ID(s)
Product Version Provider Sensor Satellite or

Spaceborne

Spatial

resolution

Acquisition

time
Data type

P1:P5 MCD12Q1

(Type 1 to 5)
v6 NASA LP DAAC at the

USGS EROS Center
MODIS Aqua, Terra 500 m 2001-2019

Image collection

over years

P6 CGLS-LULC100 v3.0.1 Copernicus Global

Land Service (CGLS)
- PROBA-V 100 m 2015-2019

Image collection

over years

P7 GFCC v3 NASA LP DAAC at

the USGS EROS Center

Multi-sensor
Multi-satellite 30 m 2000,2005,

2010,2015

Image collection

over years

P8 GLOBCOVER v2 ESA and by the Catholic

University of Louvain
MERIS ENVISAT 300 m 2009 Single Image

P9 GFSAD v0.1
Global Food Security

support Analysis Data at

30m Project (GFSAD30)

Multi-sensor
Multi-satellite 1000 m 2010 Single Image

P10 PALSAR2 vfnf JAXA EORC SAR ALOS, ALOS 2 25 m 2007-2010

2015-2017
Single Image

P11 HANSEN v1.7 Hansen, UMD, Google,

USGS, NASA
OLI Landsat 8 1 arc seconds 2000-2019 Single Image

P12 GFCH v2005 NASA, JPL - Lidar 30 arc seconds 2005 Single Image

P13 JRC Yearly History

(YH)
v1.2 EC JRC, Google

Multi-sensor
Landsat (5,7,8) 30 m 1984-2019 Single Image

P14 JRC Global Surface

Water (GSW)
v1.2 EC JRC, Google

Multi-sensor
Landsat (5,7,8) 30 m 1984-2019

Image collection

over years

P15 Tsinghua FROM-GLC v10 Tsinghua University
Multi-sensor

Landsat 30 m 1985-2018 Single Image

– Satellite sensors: the spatial, temporal and spectral resolutions of the source satellite images strongly determine the pre-

cision and accuracy of derived LULCs. Native pixel size can vary from dozens of meters to kilometers, which determines

the precision. Revisiting frequency can vary from daily images to several weeks, which determines the possibility of re-

moving cloud and atmospheric noise effects. In addition, the greater the number of spectral bands in a sensor, the greater

the amount of complementary information that can help to differentiate among LULC classes.55

– Processing techniques: the different algorithms for atmospheric correction, cloud filtering, image composition, viewing

geometry corrections, etc. can also influence LULC accuracy.

– Acquisition year(s): some LULC products just refer to a particular year while others are regularly updated.

– Classification schemes: LULC legends can greatly differ in the number of classes and typology definitions. In general,

LULC products tend to agree more in broader general categories than in finer specific ones.60
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– Classification algorithms: the approaches and rules used to identify each LULC have evolved from decision trees, to

multivariate clustering, and machine learning, including now deep learning.

– Validation techniques of the final product. The amount and global distribution of ground truth samples differs across

products and influences their reported accuracy.

Many efforts have been made to assess, compare, and harmonize the increasing plethora of global, regional and local LULC65

products, including their integration into synthetic products, which has shed light onto their strengths and weaknesses (Feng

and Bai, 2019; Zhang et al., 2019; Gao et al., 2020; Liu et al., 2021). Still, the myriad of existing products with different

specifications and accuracies have made their selection by the users problematic, and discouraging because it is frequently

unknown whether a product meets the user needs for a particular area or LULC class (Tsendbazar et al., 2015b; Xu et al.,

2020). In addition, many of these efforts are either limited to regional or national scale (e.g. Pérez-Hoyos et al. (2012); Gengler70

and Bogaert (2018)), coarse spatial resolution (e.g. Tuanmu and Jetz (2014); Jung et al. (2006)), or just one LULC type (e.g.

Fritz et al. (2011)). The use of synergistic products takes advantage from the strengths of individual products while attenuating

their respective weaknesses. However, they still face the challenge of taking into consideration the heterogeneity within pixels

(spatial purity), i.e., they only provide a single discrete class per pixel (Tuanmu and Jetz, 2014), and of considering land cover

change over time (temporal purity), i.e., they do not integrate the inter-annual variability while combining the related products.75

In general, given a target maximum error of 5–15% either per class or for the overall accuracy, most of the current global

land-cover maps still do not meet the accuracy demands of many applications (Liu et al., 2021).

In parallel to these efforts, deep artificial neural networks, also known as Deep Learning (DL) models, have shown impressive

performance in computer vision and promising ones in remote sensing during the last decade. Currently, two specific types of

DL models, i.e., CNNs (Convolutional Neural Networks) and RNNs (Recurrent Neural Networks), constitute the state-of-art80

in respectively extracting spatial and temporal patterns from data-records. Indeed, DL models are showing great performance

in LULC tasks such as scene classification (Zhang et al., 2018a), object detection (Zhao et al., 2015; Guirado et al., 2021) and

segmentation (Zhao and Du, 2016; Guirado et al., 2017; Safonova et al., 2021) in RGB and multi-spectral satellite and aerial

images. However, such good performance is only possible when DL models are trained on smart data. The concept of smart

data involves all pre-processing methods that improve value and veracity of data and of associated expert annotations (Luengo85

et al., 2020), resulting in high quality and accurately annotated datasets. In general, remote sensing datasets contain noise,

missing values, and high variability and complexity across space, time and spectral bands. Applying pre-processing methods,

such as gap filling and noise reduction to data and consensus across multiple sources to annotations, contributes to creating

smart remote sensing datasets.

Currently, there only exist few multi-spectral datasets annotated for training DL models to map LULC and LULC change90

(Table 2). However, most of these datasets provide very short time series of data, very few LULC classes, and do not have a

global coverage. As far as we know, there is no dataset designed for DL models that allows for global scale analysis of many

LULC classes and that are long enough to characterize change over time, such as phenology, inter-annual dynamics, trends,

anomalies, and abrupt changes.
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Table 2. A list of existing times series dataset, including the proposed TimeSpec4LULC dataset, for training machine learning models.

Dataset Source # images × (pixels)

Spatial

Resolution

(m)

Temporal

Resolution

No.

Bands

No.

Classes
Extent Intra/Inter time series labeled for

CaneSat

(Virnodkar et al., 2020)
Sentinel-2 1627× (10×10) 10 Monthly 6 2 India [2018, 2019]

Sugarcane

classification

SpaceNet-7

(Van Etten et al., 2021)

Dove Satellite

Constellation

Planet Labs’

24× (1024×1024) 4 Monthly 8 2 100 cities [2017,2020]
Buildings

tracking

Time series

spectral dataset for

croplands in France

(Hubert-Moy et al., 2019)

MODIS and

LPIS
21,129 pixels 250 8-day intervals 4 19 France [2006, 2017]

Crop type

mapping

TiSeLaC1 Landsat 8 × (2866× 2633) 30 Annually 10 9 The Reunion Island 2014 classification

BreizhCrops

Rußwurm et al. (2019)
Sentinel-2 610,000 pixels 60 - 10 9

Brittany dept.

France
[01/01/2017, 31/12/2017]

Crop type

mapping

TimeSpec4LULC

(Ours)
MODIS 11,856,992 pixels 500 Monthly 7 29 Global [07/2002, 01/2021]

LULC mapping

and change detection

This paper presents, TimeSpec4LULC, a new open-source, smart and global dataset of multi-spectral time series targeted95

towards the development and evaluation of DL models to map LULCs and monitor their change globally. TimeSpec4LULC

was built using Google Earth Engine (GEE) by combining the seven 500m spectral bands of MODIS Aqua and MODIS Terra

satellite sensors at a monthly time step from 2002 to 2021. It contains 11.85 million of pixels that were annotated based on a

consensus across up to 15 global LULC products (Table 1) for 29 broad and globally harmonized LULC classes. In addition, it

provides this metadata at pixel level: geographic coordinates, country and departmental divisions, spatio temporal consistency100

across LULC products, statistics on temporal data availability, and the global human modification index. The annotation quality

was further assessed by experts using Google Satellite and Bing Maps very high resolution images in 100 samples per class

evenly distributed around the world.

2 Methods

To build TimeSpec4LULC, we first determined the spatial and temporal agreement across 15 heterogeneous global LULC105

products (listed in Table 1) for 29 broad and globally harmonized LULC classes. Then, for each class, we extracted a 19-year

monthly time series for the seven 500-meter spectral bands of MODIS Terra and Aqua combined. We carried out this process

in GEE (Gorelick et al., 2017) since it provides access to freely available satellite imagery under a unified programming,

processing and visualization environment.

2.1 Finding spatial agreement across 15 global LULC products110

To find the spatial consensus across global LULC products for different LULC classes, we followed five steps: 1) selection of

global LULC products, 2) standardization and harmonization of LULC legends, 3) combination of products across space and
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time, and 4) reprojection and selection of spatial purity thresholds to get a final consistent mask across the 15 products for each

one of the 29 LULC classes.

2.1.1 Selection of global LULC products115

We used the 15 most updated global LULC products available in GEE (Table 1). These products widely differ in their source

satellite data, spatial resolution, temporal coverage, class legend, and accuracy. Given such heterogeneity, we used the consen-

sus across all of them in space and time as a source of reliability to support our annotation. That is, a given LULC class is

assigned to a 500 m pixel only if it was consistent over time and space across all the 15 LULC products.

2.1.2 Standardization and Harmonization of LULC legends120

Broadly, land cover (LC) refers to the different vegetation types (usually following biotype, plant functional type, or physiog-

nomy schemes, such as forests, shrublands, or grasslands) or other biophysical classes (such as water bodies, snow, or bare

soil) that cover the Earth’s surface. Whereas, land use (LU) describes the set of human activities that significantly modify a LC

(such as urban areas and croplands).

Figure 1. The hierarchical structure of the LULC classes contained in the TimeSpec4LULC dataset. C1 to C29: class 1 to class 29. LULC-L0

to LULC-L5: LULC level 0 to LULC level 5. The level LULC-L0 includes the 2 blue boxes. The level LULC-L1 includes the 4 green boxes.

The level LULC-L2 includes the 12 yellow boxes. The level LULC-L3 includes all the classes of the 12 yellow boxes (from C1 to C5 and

from C18 to C29) except the Forests class where it includes only the 2 orange boxes (Decidious and Evergreen). The level LULC-L4 includes

the same classes but expands the Forests class into the 4 purple boxes: Decidious (Broadleaf and Needleleaf) and Evergreen (Broadleaf and

Needleleaf). The last level LULC-L5 includes all the 29 LULC classes (from C1 to C29).
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To standardize and harmonize the LULC legends across the 15 LULC products, we used expert knowledge (Vancutsem125

et al., 2013) to create a common nomenclature of 29 broad classes (6 LU classes and 23 LC classes) that were interoperable

across all products (see the hierarchical structure of our legend in Fig. 1 and the rule set across products in Table 3). The LULC

legend was structured into 6 hierarchical levels (L0 to L5).

The six anthropogenic LU classes contained Urban and built-up areas and five types of croplands. The 23 natural or semi-

natural LC classes covered three aquatic systems (Marine water bodies, Continental water bodies, and Wetlands) and 18130

terrestrial systems (Permanent snow, Barren lands, Moss and Lichen lands, Grasslands, Close Shrublands, Open Shrublands,

and 12 types of Forests that differed in their canopy type, phenology and tree cover).

Table 3. The rule set used to build the LULC legend for TimeSpec4LULC dataset. P1 to P15: product 1 to 15. C1 to C29: class 1 to class 29.

The numbers from 0 to 220 correspond to the class label in GEE. NU: Not Used, NA: Not Available, TC: Tree Cover, G: Gain, L: Loss, D:

Datamask, TH: Tree Hight, TCC: Tree Canopy Cover, TCF: Tree-Cover Fraction, and SCF: Shrub-Cover Fraction)

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

C1 16 15 NA 7 11 60 TCC < 10 200 0 2 (TC < 10)∩ (G= 0)∩ (L= 0)∩ (D 6= 2) TH < 1 1∪ 0 0 Not(≥ 1)

C2 16 15 NA 7 11 100 TCC < 10 200∪ 150 0 2 (TC < 10)∩ (G= 0)∩ (L= 0)∩ (D 6= 2) TH < 1 1∪ 0 0 Not(≥ 1)

C3 10 10 1 6 6 30 TCC < 10 140 NA 2 (TC < 10)∩ (G= 0)∩ (L= 0)∩ (D 6= 2) TH < 2 1∪ 0 0 Not(≥ 1)

C4 7 7 2 NA 5 20∪ (10< SCF < 50) TCC < 10 150 0 2 (TC < 10)∩ (G= 0)∩ (L= 0)∩ (D 6= 2) TH < 2 1∪ 0 0 Not(≥ 1)

C5 6 6 2 NA 5 20∪ (SCF > 50) TCC < 10 130 0 2 (TC < 10)∩ (G= 0)∩ (L= 0)∩ (D 6= 2) TH < 2 1∪ 0 0 Not(≥ 1)

C6 NA NA NA 4 4 4 + (15< TCF < 30) 15< TCC < 30 60 NA 1 (15< TC < 30)∩ (G= 0)∩ (L= 0)∩ (D 6= 2) TH > 2 1∪ 0 0 Not(≥ 1)

C7 NA NA NA 4 4 4 + (40< TCF < 60) 40< TCC < 60 50 NA 1 (40< TC < 60)∩ (G= 0)∩ (L= 0)∩ (D 6= 2) TH > 2 1∪ 0 0 Not(≥ 1)

C8 4 4 6 4 4 4 + (TCF > 60) TCC > 60 50 NA 1 (TC > 60)∩ (G= 0)∩ (L= 0)∩ (D 6= 2) TH > 2 1∪ 0 0 Not(≥ 1)

C9 NA NA NA 3 3 3 + (15< TCF < 30) 15< TCC < 30 NA NA 1 (15< TC < 30)∩ (G= 0)∩ (L= 0)∩ (D 6= 2) TH > 2 1∪ 0 0 Not(≥ 1)

C10 NA NA NA 3 3 3 + (40< TCF < 60) 40< TCC < 60 NA NA 1 (40< TC < 60)∩ (G= 0)∩ (L= 0)∩ (D 6= 2) TH > 2 1∪ 0 0 Not(≥ 1)

C11 3 3 8 3 3 3 + (TCF > 60) TCC > 60 NA NA 1 (TC > 60)∩ (G= 0)∩ (L= 0)∩ (D 6= 2) TH > 2 1∪ 0 0 Not(≥ 1)

C12 NA NA NA 2 2 2 + (15< TCF < 30) 15< TCC < 30 40 NA 1 (15< TC < 30)∩ (G= 0)∩ (L= 0)∩ (D 6= 2) TH > 2 1∪ 0 0 Not(≥ 1)

C13 NA NA NA 2 2 2 + (40< TCF < 60) 40< TCC < 60 40 NA 1 (40< TC < 60)∩ (G= 0)∩ (L= 0)∩ (D 6= 2) TH > 2 1∪ 0 0 Not(≥ 1)

C14 2 2 5 2 2 2 + (TCF > 60) TCC > 60 40 NA 1 (TC > 60)∩ (G= 0)∩ (L= 0)∩ (D 6= 2) TH > 2 1∪ 0 0 Not(≥ 1)

C15 9 9 NA 1 1 1 + (15< TCF < 30) 15< TCC < 30 90 NA 1 (15< TC < 30)∩ (G= 0)∩ (L= 0)∩ (D 6= 2) TH > 2 1∪ 0 0 Not(≥ 1)

C16 8 8 4 1 1 1 + (40< TCF < 60) 40< TCC < 60 70 NA 1 (40< TC < 60)∩ (G= 0)∩ (L= 0)∩ (D 6= 2) TH > 2 1∪ 0 0 Not(≥ 1)

C17 1 1 7 1 1 1 + (TCF > 60) TCC > 60 70 NA 1 (TC > 60)∩ (G= 0)∩ (L= 0)∩ (D 6= 2) TH > 2 1∪ 0 0 Not(≥ 1)

C18 11 11 NA NA NA 90 TCC > 10 170 NA NA (TC > 10)∩ (G= 0)∩ (L= 0)∪ (D = 2) TH > 2 2∪ 3 1 Not(≥ 1)

C19 11 11 NA NA NA 90 TCC > 10
a.160∪ 180

b.Not(170)
NA NA (TC > 10)∩ (G= 0)∩ (L= 0)∪ (D = 2) TH > 2 2∪ 3 1 Not(≥ 1)

C20 11 11 NA NA NA 90 TCC < 10
160∪ 170

∪180
NA NA (TC < 10)∩ (G= 0)∩ (L= 0)∪ (D = 2) TH < 2 2∪ 3 1 Not(≥ 1)

C21 17 0 0 0 0 200 NA 210 NA 3 NA NA 3 1 Not(≥ 1)

C22 17 0 0 0 0 80 NA 210 NA 3 NA NA 3 1 Not(≥ 1)

C23 15 NA NA NA 10 70 NA 220 NA NA NA NA 1∪ 0 0 Not(≥ 1)

C24 12 12 3∪ 1 5∪ 6 7∪ 8 40 NA 11∪ 14
1∪ 2∪ 3

∪4∪ 5
NA NA NA 2∪ 3

0∪ 4∪ 5

∪8∪ 10
Not(≥ 1)

C25 12 12 1 6 7 40 NA 11 1∪ 2 NA NA NA 1∪ 0 0 Not(≥ 1)

C26 12 12 1 6 7 40 NA 14 3∪ 4∪ 5 NA NA NA 1∪ 0 0 Not(≥ 1)

C27 12 12 3 5 8 40 NA 11 1∪ 2 NA NA NA 1∪ 0 0 Not(≥ 1)

C28 12 12 3 5 8 40 NA 14 3∪ 4∪ 5 NA NA NA 1∪ 0 0 Not(≥ 1)

C29 13 13 10 8 9 50 NA 190 NA NA NA NA 1∪ 0 0 NU

2.1.3 Combining products across time and space

For each LULC class, we built a consensus image with its global distribution by agreement across the 12 LULC products (P1

to P12). For products that only contained one image (P1 to P7) referred to a particular year or period, we obtained a binary135
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Table 4. Description of the Temporal-Spatial Combination of the 15 global LULC products (P1:P15) masks to build a consensus image for

each LULC class. (1: Inter-annual combination used in all products except in P13, where we first calculated the inter-annual Mean and then

transformed it into a water no-water binary mask)

Class Id(s) LULC class(s) Spatial Combination Temporal Combination 1

C1 Barren lands Rule 1: Mean(P1 : P12) * P13 * P14 * P15 AND

C2 Moss and Lichen lands Rule 2: Mean(P1 : P5, P7 : P12) * P6 * P13 * P14 * P15 MEAN

C3 Grasslands Rule 1: Mean(P1 : P12) * P13 * P14 * P15 AND

C4 Open Shrublands Rule 1: Mean(P1 : P12) * P13 * P14 * P15 AND

C5 Close Shrublands Rule 1: Mean(P1 : P12) * P13 * P14 * P15 MEAN

C6:C17 Forests Rule 1: Mean(P1 : P12) * P13 * P14 * P15 MEAN

C18 Mangrove Wetlands Rule 3: Mean(P1 : P7, P9 : P14) * P8 * P15 MEAN

C19 Swamp Wetlands Rule 4: Mean(P1 : P8.a, P9 : P12) * P8.b * P15 MEAN

C20 Marshland Wetlands Rule 5: Mean(P1 : P6, P8 : P10, P13 : P14) * P7 * P11 * P12 * P15 MEAN

C21:C22 Water Bodies Rule 1: Mean(P1 : P12) * P13 * P14 * P15 AND

C23 Permanent Snow Rule 1: Mean(P1 : P12) * P13 * P14 * P15 AND

C24 Croplands Flooded with seasonal water Rule 6: Mean(P1 : P12) * (P13 OR P14) * P15 AND

C25:C26 Cereal Croplands Rule 1: Mean(P1 : P12) * P13 * P14 * P15 AND

C27:C28 Broadleaf Croplands Rule 1: Mean(P1 : P12) * P13 * P14 * P15 AND

C29 Urban and built-up areas Rule 1: Mean(P1 : P12) * P13 * P14 * P15 AND

mask with the targeted LULC class as 1. As further explained below, for products that were a collection over years (P8 to P12),

we first obtained a binary mask for each year and then produced their combination over years (Table 4). Then, we obtained the

spatial agreement over these 12 masks and used two water bodies products (P13 and P14) and one impervious surface product

(P15) to further refine the consensus.

The inter-annual combination of LULC masks was based on two types of rules according to the inter-annual consistency140

of some products for specific LULC classes. In general, the combination over time was done using the AND operator when

handling classes with high temporal stability, namely Urban and built-up areas, water bodies, Permanent Snow, Croplands,

Open Shrublands, Barren lands, and Grasslands. Alternatively, since some LULC products showed implausible inter-annual

changes for specific classes (e.g., wetlands affected by droughts or large areas of no-forest cover in one year preceded and

followed by forest in the previous and following years, respectively), to avoid unrealistic data loss, the MEAN operator was145

used in the following classes: Moss and Lichen lands, Forests, Close Shrublands, and Wetlands.

Afterwards, for each LULC class, a spatial combination of the 12 masks, one per product, was performed following six

specific rules according to the global abundance of each class (Table 4). In general (Rule 1), the MEAN operator was used

across products P1 to P12 and the result was multiplied by two water class masks (P13 and P14) to eliminate water pixels from

land classes and land pixels from water classes, and by impervious surface class mask of P15 to eliminate impervious pixels150

from all classes but urban. More relaxed rules where applied to five LULC classes that had too few pixels (less than 1000) with

the general rule (see details in Table 4). The application of the explained spatio-temporal combination resulted in a mask for

8

https://doi.org/10.5194/essd-2021-253

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 12 October 2021
c© Author(s) 2021. CC BY 4.0 License.



each LULC class produced at the resolution of the finest product (i.e., 30 m), where each pixel had a consensus level value p

in [0,1]. Hence, p indicates the consensus degree for a pixel to belong to the class represented by each LULC mask.

2.1.4 Re-projection and Selection of purity threshold155

The 30-meter resolution LULC consensus was reprojected to MODIS resolution (approximately equal to 500 m) using the

spatial MEAN reducer. This 500 m average consensus was used to explore different pixel-purity thresholds θ for each LULC

class. We kept θ = 1, when the number of 500-meter pixels retrieved was greater than 1000, which meant that those pixels

were 100% pure for that class. When the number of these pixels was lower than 1000 at θ = 1, we decreased θ to 0.75%, which

meant that up to 25% of the pixel could be occupied by another LULC class. In any case, our dataset provides as metadata at160

pixel level, the spatial purity percentage, so the user can control the desired purity and subsequent sample size (Table 6).

Figure 2. Example of the final mask creation process for the Dense Evergreen Broadleaf Forests LULC class produced through the spatial

agreement over the 15 global LULC products available in GEE.
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To clarify the process of spatial agreement creation across the 15 global LULC products, we provide an example explaining

the final mask creation for the class Dense Evergreen Broadleaf (Fig. 2). After performing the spatial agreement process for

each LULC class, we combined the final class masks for all the 29 LULC classes to generate one global LULC map describing

their distribution (Fig. 3).165

Figure 3. Distribution of the number of covered countries (FAO-L0) over the 29 LULC classes. This map combines all the LULC classes

maps that were generated from the process of spatial agreement across the 15 global LULC products available in GEE.

2.2 Extracting times series of spectral data for 29 LULC classes globally

To extract the 19-year monthly time series of the seven 500-meter MODIS spectral bands for each of the 29 LULC classes

throughout the entire world, we followed four steps (Fig. 4): 1) spatio-temporal filtering of Terra and Aqua data based on

Quality Assessment flags, 2) aggregating the original 8-day Terra and Aqua data into monthly composites, 3) merging the two

monthly time series into a Terra+Aqua Combined time series, and 4) data extraction and archiving (Fig. 5).170
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Figure 4. Description of the spatio-temporal filtering of Terra and Aqua, their aggregation into monthly composites, and their merging into

Terra+Aqua Combined time series. This process aims to filter out spectral values affected by disruptive conditions, and to reduce the number

of gaps in the multi-spectral time series for the 29 LULC classes.

2.2.1 Spatio-temporal filtering of Terra and Aqua data based on Quality Assessment flags

MODIS sensor is known by its high temporal coverage ensured by Terra and Aqua satellites, and by its innovative features

(spectral, spatial, and temporal) that are highly suitable for LULC mapping and change detection (García-Mora et al., 2012;
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Xiong et al., 2017). Thus, we used two MODIS products MOD09A1 and MYD09A1 that estimate the 8-day surface spectral

reflectance for the seven 500-meter bands from Terra and Aqua, respectively. Since Aqua was launched three years later (in175

2002) after Terra had been launched, the acquisition time of our dataset is from 2002-07-04 to 2021-01-25.

The quality of any time series of satellite imagery is affected by the internal malfunction of satellite sensors, atmospheric

(e.g., clouds, shadows, cirrus, etc.) or land (e.g., floods, snow, fires, etc.) conditions. In addition to the spectral bands, MODIS

products provide ‘Quality Assessment’ (QA) flags as metadata bands to allow the user to filter out spectral values affected by

disruptive conditions. Therefore, all QA flags were used to remove noise, spurious values, and outliers in the image collection.180

"MODLAND QA" flags (bits 0-1) were used to only select pixel values produced at ’ideal quality’. Then, "State QA" flags

were used to mask out clouds (bits 0-1), internal clouds (bit 10), pixels adjacent to clouds (bit 13), cirrus (bits 8-9), cloud

shadows (bit 2), high aerosol quantities (bits 6-7), and internal fires (bit 11). Regarding the water flag (bits 3-5), it was used to

mask out water pixels in terrestrial systems (but not in Permanent Snow, and in Croplands flooded with seasonal water).

2.2.2 Aggregating the original 8-day Terra and Aqua data into monthly composites185

Filtering the MODIS Terra and Aqua data records produced many missing-value gaps in their 8-day time series. To overcome

this issue and further reduce the presence of noise in our dataset, the original 8-day time series were aggregated into monthly

composites by computing the maximum over the observations of each month. Indeed, despite reducing the temporal resolution

from 8-day to monthly composites shortened the time series size, it generated two datasets with less missing values and clear

monthly patterns, which are more intuitive to track LULC dynamics than the 8-day patterns.190

2.2.3 Merging the two monthly time series into a Terra+Aqua Combined time series

Terra satellite daily orbits above the Earth’s surface from north to south in the morning at around 10:30 local time, while Aqua

orbits in the opposite direction in the afternoon at around 13:30. Having two opportunities per day at each location increases

the chances of capturing an image under good atmospheric conditions. To further reduce the number of missing values in our

dataset, we merged the monthly time series provided by these two satellites into a Terra+Aqua Combined time series. That is,195

for each pixel and month, when both Terra and Aqua had values, we used the mean between them; when one satellite had a

missing value, we used the available one; and when both of them had missing values, the combined value remains missing.

2.2.4 Data extraction and archiving

One of the biggest advantages of our dataset is its global scale characteristic since all the LULC classes data were extracted

globally from all regions over the world. To take into account all the differences across the globe and thinking of regional200

interests that users could have, for each LULC class we organized the dataset into two levels. We used the Food and Agricultural

Organization’s (FAO’s) Global Administrative Unit Layers (GAUL) product available in GEE to arrange our dataset into

FAO-L0 (i.e., countries) and FAO-L1 (i.e., departments, states, provinces). For all 500-meter pixels selected at each FAO-

L1 administrative unit, we retrieved the time series of the 7 spectral bands, together with the LULC class code and name,
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pixel id, pixel purity percentage, percentage of non-missing data per band throughout the time series, average Global Human205

Modification index (gHM), and the latitude and longitude of the pixel center. Average gHM was derived as the spatial mean

projected to MODIS resolution of the gHM (Kennedy et al., 2019) product available in GEE, which provides a cumulative

measures of human modification of terrestrial lands. Finally, we exported the 7-band time series of each FAO-L1 unit and

structured it as explained in section 3.

Figure 5. Description of the data extraction process for the LULC class Dense Evergreen Broadleaf Forests. It consists in looping over all

the world’s countries (FAO-L0) and departments (FAO-L1) that intersect with this LULC class mask. Then, it extracts the time series of the

seven spectral bands of MODIS (MCD09A1-monthly-500m) along with a set of metadata at the pixel level.

13

https://doi.org/10.5194/essd-2021-253

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 12 October 2021
c© Author(s) 2021. CC BY 4.0 License.



3 Data210

To organize and assess the quality of the extracted global data for all the 29 LULC classes, we first present the description of

the dataset structure stored in the repository2 (Khaldi et al., 2021), then we evaluate the quality of its annotation process.

3.1 Data structure description

TimeSpec4LULC is provided in 30 different ZIP files owning the name of the 29 LULC classes (The Barren Lands class is

divided into two files since it is too large). Within each ZIP file, there exists a set of seven CSV files, each one corresponding to215

one of the seven spectral bands. The naming of each file follows this structure: IdOfTheClass_NameOfTheClass_ModisBand.csv

For example, for band 1 of the Barren Lands class, the filename is: 01_BarrenLands_MCD09A1b01.csv

Inside each CSV file, rows represent the collected pixels for that class. The first 11 columns contain the following metadata:

– “IdOfTheClass”: Id of the class.

– “NameOfTheClass”: Name of the class.220

– “IdOfTheLevel0”: Id of the FAO-L0 (i.e., countries).

– “IdOfTheLevel1”: Id of the FAO-L1 (i.e., departments, states, or provinces depending on the country).

– “IdOfThePixel”: Id of the pixel.

– “PurityOfThePixel”: Spatial and inter-annual consensus for this class across multiple land-cover products, i.e., purity of

the pixel.225

– “DataAvailability”: percentage of non-missing data per band throughout the time series.

– “Index_GHM”: average of Global Human Modification index (gHM).

– “Lat”: Latitude of the pixel center.

– “Lon”: Longitude of the pixel center.

– “.geo”: (Longitude, Latitude) of the pixel center with more precision.230

And, the last 223 columns contain the 223 monthly observations of the time series for one spectral band from 2002-07 to

2021-01. Along with the dataset, an Excel file named ’Countries_Departments_FAO-GAUL’ containing the FAO-L0 and the

FAO-L1 Ids and names (following the FAO-GAUL standards) is provided.

2https://zenodo.org/record/5020024.YWARotpBxaQ
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3.2 Data quality control

The quality of the dataset annotation was assessed and validated visually by two co-author experts using two very high reso-235

lution imagery (< 1m/pixel) sources, namely Google Earth and Bing Maps imagery3. The assessment process includes three

stages.

– First, a set of 100 samples is carefully selected from each class following the minimum distance criteria. That is, depend-

ing on the overall size of LULC class, the pixels within a minimum distance with respect to each pixel are eliminated

until getting 100 pixels evenly distributed over the globe. Fig. 6 shows the distribution of the 2,900 selected pixels.240

– Second, the class of each pixel of the 29×100 samples is identified visually by the expert eye following the next rule. We

consider as ground truth the dominant LULC class, such LULC class occupies at least 70% of the pixel. The presence of

up to 30% of features of other different LULC classes within the dominate class are ignored.

– Once the validated LULC classification matrix was obtained (Table 5), the F1 score was calculated at all the LULC

levels (from L0 to L5), labeled as LULC-L5 in Fig. 1. As it can be noticed, as we go up from level L0 to L5 the obtained245

dataset accuracy increases from 87% to 96% due mainly to the forests classification.

Figure 6. Global distribution of the selected 2,900 pixels to perform the quality control of the TimeSpec4LULC dataset for all the 29 LULC

classes.
3https://www.bing.com/maps/

15

https://doi.org/10.5194/essd-2021-253

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 12 October 2021
c© Author(s) 2021. CC BY 4.0 License.



Table 5. Description of the data quality control results of the 2900 pixels for each LULC level (L0 to L5) using the F1 score. The correspon-

dence between long and short names of the LULC-classes is provided in Table 6

L0 F1 L1 F1 L2 F1 L3 F1 L4 F1 L5 F1

Land Cover 0.98

Terrestrial Lands 0.98

BarrenLands 0.88 BarrenLands 0.88 BarrenLands 0.88 BarrenLands 0.88

MossAndLichen NA MossAndLichen NA MossAndLichen NA MossAndLichen NA

Grasslands 0.68 Grasslands 0.68 Grasslands 0.68 Grasslands 0.68

Shrubland 0.87
ShrublandOpen 0.74 ShrublandOpen 0.74 ShrublandOpen 0.74

SrublandClose 0.96 SrublandClose 0.96 SrublandClose 0.96

Forests 0.98

ForestsDe 0.99

ForestsDeBr 0.98

ForestsOpDeBr 0.81

ForestsCIDeBr 0.79

ForestsDeDeBr 0.93

ForestsDeNe 1

ForestsOpDeNe 0.9

ForestsCIDeNe 0.86

ForestsDeDeNe 0.91

ForestsEv 0.97

ForestsEvBr 0.94

ForestsOpEvBr 0.67

ForestsCIEvBr 0.78

ForestsDeEvBr 0.93

ForestsEvNe 1

ForestsOpEvNe 0.85

ForestsCIEvNe 0.84

ForestsDeEvNe 0.95

PermanentSnow 0.98 PermanentSnow 0.98 PermanentSnow 0.98 PermanentSnow 0.98

Aquatic Lands 0.94

Wetland 0.92

WetlandMangro 0.88 WetlandMangro 0.88 WetlandMangro 0.88

WetlandSwamps 0.91 WetlandSwamps 0.91 WetlandSwamps 0.91

WetlandMarshl 0.95 WetlandMarshl 0.95 WetlandMarshl 0.95

WaterBody 0.97
WaterBodyMari 0.88 WaterBodyMari 0.88 WaterBodyMari 0.88

WaterBodyCont 0.86 WaterBodyCont 0.86 WaterBodyCont 0.86

Land Use 0.93
Crop Lands 0.95

CropSeasWater 0.85 CropSeasWater 0.85 CropSeasWater 0.85 CropSeasWater 0.85

CropCerea 0.92
CropCereaIrri 0.92 CropCereaIrri 0.92 CropCereaIrri 0.92

CropCereaRain 0.91 CropCereaRain 0.91 CropCereaRain 0.91

CropBroad 0.98
CropBroadIrri 0.96 CropBroadIrri 0.96 CropBroadIrri 0.96

CropBroadRain 0.96 CropBroadRain 0.96 CropBroadRain 0.96

UrbanBlUpArea 0.93 UrbanBlUpArea 0.93 UrbanBlUpArea 0.93 UrbanBlUpArea 0.93 UrbanBlUpArea 0.93

Mean 0.96 0.95 0.91 0.90 0.91 0.87
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Figure 7. Global density of all the 11,856,992 collected pixels in the TimeSpec4LULC dataset for all the 29 LULC classes.

4 Results and Discussion

The total number of collected time series (pixels) in all the 29 LULC classes is 11,856,992, which is large enough to build high

quality DL models. The density of the collected pixels over the world is depicted by Fig. 7.

The number of collected time series, at the lowest purity, differs from one class to another according to the global abundance250

of each class (Table 6). But, in general, we have at least 1,158 time series in each LULC class which is sufficient for DL

modeling. In 15 LULC classes, the number of collected time series, at purity 100%, is at least 2,225 per class. This means

that these classes have enough pure spectral information describing their behavior over time to train DL models with very high

accuracy. However, in the remaining 14 LULC classes, the number of time series, collected at purity 100%, is either small (with

Close shrublands, Dense Evergreen Needleleaf Forests, and Marshland wetlands) or null in the remaining Wetlands classes and255

Forests classes (except Dense Broadleaf classes). This implies that, within 500 m pixels, the LULC products are less consistent

within these classes and that it may exist remaining noise in one LULC class from other LULC classes. Since our dataset

provides the level of spatial purity at pixel level, the user can always select the desired purity threshold.

Certain number of time series in each LULC class still contain some missing data that could be handled neither with the

monthly aggregation process nor with the Terra-Aqua merging process (Table 7). The LULC classes that have less than 1000260

time series (i.e., MODIS pixels) without missing data in at least one spectral band are Moss and Lichen lands, Close Shrublands,

Open and Dense Deciduous Broadleaf Forests, all Deciduous Needleleaf Forests, Open Evergreen Broadleaf Forests, Mangrove

wetlands, Swamp wetlands, Permanent snow, and Croplands flooded with seasonal water. This means that the multi-spectral
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time series information of these classes is hugely affected by atmospheric and/or land conditions. For almost all LULC classes

(except Barren Lands, Continental Water Bodies, and Rainfed Cereal Croplands), the number of time series without gaps is265

exactly the same over all the spectral bands excluding Band 6 which is the most contaminated by gaps. This severe drop in the

number of time series without gaps in Band 6 compared to the other bands is due to the known "dead lines" in Aqua band 6

caused by the already reported malfunctioning or noise in some of its detectors (Zhang et al., 2018b).

Our dataset is distributed all over the world’s FAO-L0 and FAO-L1 partitions (Fig. 8, Fig. 9, and Table 8). For almost all

the 29 LULC classes, the collected time series covers more than 9 countries, except with Moss and Lichen lands, which were270

collected from 2 countries, and Deciduous Needleleaf Forests, which were collected from 3 countries. This small number

of countries covered by these classes is due to their natural scarce distribution over the world. Contrary, some of the LULC

classes, namely Water Bodies (Marine and Continental), Rainfed Croplands (Cereal and Broadleaf), and Urban and built-up

areas have a broad world coverage, i.e., more than 80 countries and more than 570 departments (Fig. 8 and Fig. 9).

According to Fig. 10, the gHM index of the five cropland classes, and the Urban and built-up areas class is widely higher275

(more than 59% of human change) compared to the other land cover classes, which proves their accurate annotation as human

Land Uses.

This smartly, pre-processed, and annotated dataset is targeted towards scientific users interested in developing and evaluating

various DL models to detect LULCs and monitor their change. For example, TimeSpec4LULC can be used i) to characterize

the seasonal and inter-annual dynamics and changes of vegetation types and LULC classes, ii) to perform environmental280

monitoring, management and planning, ii) to study the intra-class behaviors of LULCs, i.e., assess the behavior of one specific

LULC in different areas of the world and see whether it maintains the same pattern or it reveals different patterns, and iii) to

study the inter-class differences and similarities of LULCs, i.e., recognise and compare the patterns and dynamics of all LULCs

(e.g., time series segmentation).

5 Conclusions285

Accurate LULC mapping and change detection is highly relevant for many applications, including Earth system modeling,

environmental monitoring, management and planning, or natural hazards assessment, among many others. However, there still

exists a high level of disagreement across current global LULC products, particularly for some LULC classes. To address

the challenge of improving LULC products and change detection, we have created a smart open-source global dataset of

multi-spectral time series for 29 LULC classes containing almost 11.85 million pixels annotated by using the spatio-temporal290

agreement across the 15 global LULC products available in GEE. The 29 LULC classes were hierarchically grouped into a

legend with five levels. The monthly 7-band time series dataset was made by merging the two MODIS sensor data records,

Terra and Aqua, at 500 m resolution and expands 19 years from 2002 to 2021. Each pixel is provided with a set of meta-

data about geographic coordinates, country and departmental divisions, spatio-temporal consistency across LULC products,

temporal data availability, and the global human modification index. Finally, to assess the annotation quality of the dataset, a295

sample of 100 pixels per class, evenly distributed around the world, was selected by maximizing the distance among sampled
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pixels, and validated with photo-interpretation by experts using very high resolution images from both Google Earth and Bing

Maps. The overall accuracy (F1 value) of the annotation varied from 96% at the coarser classification level to 87% at the

finest level. This smartly, pre-processed, and annotated dataset is targeted towards scientific users interested in developing and

evaluating various machine learning models, including deep learning networks, to perform global LULC mapping and change300

detection.

Figure 8. Distribution of the number of covered countries (FAO-L0) over the 29 LULC classes.

Figure 9. Distribution of the number of covered departments (FAO-L1) over the 29 LULC classes.

Figure 10. Distribution of the mean of the Global Human Modification (gHM) index over the 29 LULC classes.
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Table 6. Description of the full and short name of each LULC class along with the number of pixels collected at purity 100% and at the

lowest purity retrieved.

Class Id LULC class full name LULC class short name
# Pixels retrieved

at purity 100%

Lowest purity

in the dataset
# Collected pixels

C1 Barren lands BarrenLands 5,866,886 1 5,866,886

C2 Moss and lichen lands MossAndLichen 2,804 1 2,804

C3 Grasslands Grasslands 890,842 1 890,842

C4 Open shrublands ShrublandOpen 121,273 1 121,273

C5 Close shrublands SrublandClose 4 0.95 2,910

C6 Open Deciduous Broadleaf Forests ForestsOpDeBr 0 0.85 6,956

C7 Close Deciduous Broadleaf Forests ForestsClDeBr 0 0.85 35,445

C8 Dense Deciduous Broadleaf Forests ForestsDeDeBr 2,225 1 2,225

C9 Open Deciduous Needleleaf Forests ForestsOpDeNe 0 0.75 5,266

C10 Close Deciduous Needleleaf Forests ForestsClDeNe 0 0.85 1,348

C11 Dense Deciduous Needleleaf Forests ForestsDeDeNe 0 0.95 10,716

C12 Open Evergreen Broadleaf Forests ForestsOpEvBr 0 0.75 22,315

C13 Close Evergreen Broadleaf Forests ForestsClEvBr 0 0.85 3,245

C14 Dense Evergreen Broadleaf Forests ForestsDeEvBr 1,198,448 1 1,198,448

C15 Open Evergreen Needleleaf Forests ForestsOpEvNe 0 0.75 20,314

C16 Close Evergreen Needleleaf Forests ForestsClEvNe 0 0.85 4,232

C17 Dense Evergreen Needleleaf Forests ForestsDeEvNe 199 0.95 323,892

C18 Mangrove wetlands WetlandMangro 0 0.85 4,707

C19 Swamp wetlands WetlandSwamps 0 0.85 1,158

C20 Marshland wetlands WetlandMarshl 80 0.85 9,303

C21 Marine water bodies WaterBodyMari 107,467 1 107,467

C22 Continental water bodies WaterBodyCont 977,759 1 977,759

C23 Permanent snow PermanentSnow 99,798 1 99,798

C24 Croplands flooded with seasonal water CropSeasWater 38,636 1 38,636

C25 Irrigated cereal croplands CropCereaIrri 402,049 1 402,049

C26 Rainfed cereal croplands CropCereaRain 786,837 1 786,837

C27 Irrigated broadleaf croplands CropBroadIrri 392,091 1 392,091

C28 Rainfed broadleaf croplands CropBroadRain 359,141 1 359,141

C29 Urban and built-up areas UrbanBlUpArea 158,929 1 158,929
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Table 7. Description of the number of time series without missing data per spectral bands.

Class Id Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7

C1 4,378,501 4,378,501 4,378,501 4,378,473 4,378,501 3,947,731 4,378,501

C2 0 0 0 0 0 0 0

C3 414,963 414,963 414,963 414,963 414,963 310,326 414,963

C4 104,633 104,633 104,633 104,633 104,633 90,892 104,633

C5 1,099 1,099 1,099 1,099 1,099 886 1,099

C6 1,035 1,035 1,035 1,035 1,035 559 1,035

C7 7,675 7,675 7,675 7,675 7,675 5,463 7,675

C8 110 110 110 110 110 25 110

C9 11 11 11 11 11 1 11

C10 0 0 0 0 0 0 0

C11 0 0 0 0 0 0 0

C12 1,024 1,024 1,024 1,024 1,024 552 1,024

C13 1,957 1,957 1,957 1,957 1,957 1,498 1,957

C14 8,488 8,488 8,488 8,488 8,488 3,610 8,488

C15 1,740 1,740 1,740 1,740 1,740 1,574 1,740

C16 1,386 1,386 1,386 1,386 1,386 1,068 1,386

C17 22,488 22,488 22,488 22,488 22,488 8,219 22,488

C18 690 690 690 690 690 201 690

C19 287 287 287 287 287 257 287

C20 1,409 1,409 1,409 1,409 1,409 1,134 1,409

C21 11,640 11,640 11,640 11,640 11,640 1,151 11,640

C22 140,856 140,854 140,856 140,856 140,856 44,302 140,856

C23 138 138 138 138 138 11 138

C24 269 269 269 269 269 96 269

C25 25,142 25,142 25,142 25,142 25,142 17,607 25,142

C26 262,632 262,630 262,630 262,630 262,630 181,382 262,630

C27 29,154 29,154 29,154 29,154 29,154 14,636 29,154

C28 79,686 79,686 79,686 79,686 79,686 43,080 79,686

C29 20,289 20,289 20,289 20,289 20,289 10,697 20,289
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Table 8: Description of the number of FAO-L0 and FAO-L1 covered by the collected pixels along with the mean and (the standard deviation)

of the pixels gHM index, purity, and temporal availability percentage over the seven spectral bands.

Class Id
# FAO

L0

# FAO

L1

gHM

index

Purity

(%)
Temporal Availability Percentage (%)

Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7

C1 61 414 14.19 100 98.51 98.50 98.50 98.50 98.50 98.07 98.50

(10.20) (0.00) (8.10) (8.14) (8.14) (8.14) (8.14) (8.74) (8.14)

C2 2 6 0.01 100 51.24 51.24 51.24 51.24 51.24 46.69 51.24

(0.23) (0.00) (17.85) (17.85) (17.85) (17.85) (17.85) (17.54) (17.85)

C3 46 269 19.35 100 98.26 98.26 98.26 98.26 98.26 97.72 98.26

(14.09) (0.00) (6.77) (6.77) (6.77) (6.77) (6.77) (7.38) (6.77)

C4 26 105 7.79 100 99.64 99.64 99.64 99.64 99.64 99.44 99.64

(8.82) (0.00) (4.31) (4.31) (4.31) (4.31) (4.31) (4.61) (4.31)

C5 13 27 7.83 96.78 98.85 98.85 98.85 98.85 98.85 97.85 98.85

(5.82) (1.32) (2.85) (2.85) (2.85) (2.85) (2.85) (3.65) (2.85)

C6 24 71 13.91 85.78 98.21 98.21 98.21 98.21 98.21 97.11 98.21

(6.41) (0.68) (2.83) (2.83) (2.83) (2.83) (2.83) (3.40) (2.83)

C7 25 90 12.99 86.09 97.53 97.53 97.53 97.53 97.53 95.96 97.53

(5.58) (1.07) (3.52) (3.52) (3.52) (3.52) (3.52) (4.62) (3.52)

C8 15 52 18.44 100 90.18 90.18 90.18 90.18 90.18 88.12 90.18

(9.86) (0.00) (11.65) (11.65) (11.65) (11.65) (11.65) (12.69) (11.65)

C9 3 18 0.79 76.37 89.29 89.29 89.29 89.29 89.29 88.05 89.29

(2.39) (1.29) (8.47) (8.47) (8.47) (8.47) (8.47) (8.83) (8.47)

C10 3 9 3.31 85.51 78.51 78.51 78.51 78.51 78.51 76.07 78.51

(3.73) (0.43) (7.87) (7.87) (7.87) (7.87) (7.87) (8.00) (7.87)

C11 3 13 2.83 96.10 85.79 85.79 85.79 85.79 85.79 82.69 85.79

(3.77) (0.92) (9.20) (9.20) (9.20) (9.20) (9.20) (9.64) (9.20)

C12 50 183 8.71 77.27 84.65 84.65 84.65 84.65 84.65 79.97 84.65

(14.26) (2.07) (18.30) (18.30) (18.30) (18.30) (18.30) (19.28) (18.30)

C13 34 84 12.89 86.46 90.67 90.67 90.67 90.67 88.50 85.85 90.67

(12.06) (1.44) (20.30) (20.30) (20.30) (20.30) (20.30) (21.68) (20.30)

C14 44 200 3.88 100 88.86 88.87 88.87 88.87 88.87 82.95 88.87
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Table 8: – Continued from previous page

Class Id
# FAO

L0

# FAO

L1

gHM

index

Purity

(%)
Temporal Availability (%)

Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7

(4.04) (0.00) (9.17) (9.10) (9.10) (9.10) (9.10) (9.93) (9.10)

C15 9 36 1.15 76.54 59.21 59.21 59.21 59.21 59.21 56.90 59.21

(3.30) (1.31) (37.87) (37.87) (37.87) (37.87) (37.87) (37.74) (37.87)

C16 17 84 5.46 86.13 88.61 88.61 88.61 88.61 88.61 86.55 88.61

(6.47) (1.03) (24.75) (24.75) (24.75) (24.75) (24.75) (25.84) (24.75)

C17 35 253 10.81 85.40 85.40 85.40 85.40 85.40 85.40 82.27 85.40

(13.92) (1.41) (26.61) (26.61) (26.61) (26.61) (26.62) (27.26) (26.61)

C18 10 29 13.92 87.58 97.93 97.93 97.93 97.93 97.93 95.82 97.93

(9.70) (2.38) (4.14) (4.14) (4.14) (4.14) (4.14) (5.98) (4.14)

C19 40 84 13.20 87.08 95.58 95.58 95.58 95.58 95.58 92.65 95.58

(9.92) (2.16) (7.01) (7.01) (7.01) (7.01) (7.01) (9.57) (7.01)

C20 24 44 7.52 90.43 74.97 74.97 74.97 74.97 74.97 71.57 74.97

(11.96) (3.86) (17.53) (17.53) (17.53) (17.53) (17.53) (18.45) (17.53)

C21 124 646 3.50 100 90.98 90.98 90.96 90.98 90.98 84.29 90.98

(11.10) (0.00) (11.43) (11.44) (11.52) (11.43) (11.43) (14.40) (11.43)

C22 126 934 1.15 100 87.98 87.98 87.96 87.98 87.98 81.46 87.98

(6.02) (0.00) (13.29) (13.30) (12.67) (13.29) (13.29) (16.54) (13.29)

C23 30 119 1.96 100 78.50 78.50 78.50 78.50 78.50 72.06 78.50

(5.63) (0.00) (11.52) (11.52) (11.52) (11.52) (11.52) (12.85) (11.52)

C24 28 143 59.72 100 79.60 79.60 79.60 79.60 79.60 74.86 79.60

(18.78) (0.00) (9.45) (9.45) (9.45) (9.45) (9.45) (9.84) (9.45)

C25 25 175 75.11 100 92.13 92.13 92.13 92.13 92.13 89.93 92.13

(6.07) (0.00) (9.80) (9.80) (9.80) (9.80) (9.80) (10.67) (9.80)

C26 95 936 62.05 100 95.43 95.43 95.43 95.43 95.43 94.02 95.43

(13.42) (0.00) (10.47) (10.47) (10.47) (10.47) (10.47) (11.50) (10.47)

C27 22 134 72.82 100 88.47 88.47 88.47 88.47 88.47 85.97 88.47

(7.21) (0.00) (9.63) (9.63) (9.63) (9.63) (9.63) (10.73) (9.63)

C28 84 578 60.89 100 95.00 95.00 95.00 95.00 95.00 93.50 95.00
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Table 8: – Continued from previous page

Class Id
# FAO

L0

# FAO

L1

gHM

index

Purity

(%)
Temporal Availability (%)

Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7

(12.60) (0.00) (9.46) (9.46) (9.46) (9.46) (9.46) (10.55) (9.46)

C29 158 1225 89.75 100 80.99 80.99 80.99 80.99 80.99 77.26 80.99

(5.30) (0.00) (28.39) (28.39) (28.39) (28.39) (28.39) (29.25) (28.39)

Code and data availability. This dataset (Khaldi et al., 2021) is available to the public through an unrestricted data repository hosted by

Zenodo at https://zenodo.org/record/5020024#.YWARotpBxaQ.
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